Scalable boson encoding for VQE

Andy C. Y. Li, Alexandru Macridin, Panagiotis Spentzouris Fermi National Accelerator Laboratory

FERMILAB-POSTER-20-037-QIS

Highlights

- Number-basis binary encoding with scalable measurement scheme for boson operators
- Demonstration using a Rabi model VQE application

Number basis binary encoding

Goal: encode the states in a truncated boson Hilbert space by a finite number of qubits using the number basis

Measure $\langle f(\overrightarrow{q},\overrightarrow{p})\rangle$ with N_I -boson-mode interaction where f is a polynomial function of degree n_f		
Qubit count per mode	$q_c = \log_2(N+1)$	
Circuit sampling count	$\leq O(q_c^{N_I\operatorname{ceil}(1+\log_2 n_f/N_I)})$	
Gate count	$O(N_I \times q_c)$	

- Logarithmic memory efficiency
- Shallow circuit depth for expectation value measurement
- Practical circuit sampling overhead
- Suitable for VQE applications of multi-mode systems involving a large number of bosons

VQE of Rabi model with Rigetti's Aspen

Rabi model – simple light-matter interaction

$$H = \Omega a^{\dagger} a + \frac{\Omega}{2} \sigma_z + \frac{g}{2} (a^{\dagger} + a) \sigma_x$$

 $\begin{array}{c} \Omega \\ g \\ \Omega \\ \end{array}$

The photon mode (truncated to up to three photons) is encoded using two qubits.

$\begin{array}{c|c} & \text{Hardware efficient ansatz} \\ \hline Q_0:|0\rangle & \hline \\ & - \hline \\ & -$

 $R_{Y}(\theta_{2})$ $R_{Z}(\theta_{3})$ $R_{Y}(\theta_{8})$ $R_{Z}(\theta_{9})$ $R_{Z}(\theta_{10})$ $R_{Z}(\theta_{11})$

TLS

0.1 -

-0.1

-0.5

-0.6

-0.7

Optimization for low-energy spectrum

 $R_{Y}(\theta_{4}) \mid R_{Z}(\theta_{5}) \mid$

— CMA-ES

Eigenstates: $|\psi_j\rangle = \operatorname{argmin} C_j$

Expt: $g = 0.6\Omega$

Quantum 3, 156 (2019)

 $\stackrel{\longleftarrow}{\blacktriangleright} \operatorname{R}_{Y}(\theta_{12}) \mid \operatorname{R}_{Z}(\theta_{13})$

Exact ground state	0> —	
	Optimizer	$ E - E_{exact} $
Marine Marine Land College Col	CMA-ES	0.062
	SPSA	0.099
. All de la company de la comp	COBYLA	0.165
0 200 400 600 800 1000	BOBYQA	0.219
# of energy measurement	Nelder-Mead	0.223

- Low-energy spectrum: ground and first-excited states
- Narrowing of energy gap with increasing coupling g
- Discrepancy between experimental result and exact solution: hardware noise and sampling errors

This Poster has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.